
CARBURETOR SERVICE MANUAL

AIR BLED
THERMO·QUAD

AIR BLED THERMO•QUAD CARBURETOR

TABLE OF CONTENTS

GENERAL DESCRIPTION
CARBURETOR CIRCUITS
SERVICE PROCEDURE 10
1. Disassembling the Carburetor 10
a. Removing Linkage and Bowl Cover 10
b. Disassembling Bowl Cover 10
c. Disassembling Throttle Body
d. The Main Body 12
2. Inspection and Reassembly
a. Visual Inspection
b. Reassembly of Throttle Body
c. Installing Choke Vacuum Diaphragm 13
d. Reassembly of Bowl Cover
3. Carburetor Adjustments
a. Secondary Throttle Linkage Adjustment
b. Secondary Air Valve Opening Adjustment
d. Accelerator Pump Stroke Adjustment
f. Choke Diaphragm Connector Rod Adjustment 17
g. Vacuum Kick Adjustment
h. Fast Idle Cam and Linkage Adjustment
i. Choke Unloader Adjustment
j. Secondary Throttle Lockout Adjustment 20
k. Bowl Vent Valve Adjustment 20
1. Installing Carburetor on Engine 20
m. Fast-Idle Speed Adjustment 20
n. Fast Curb Idle Speed Solenoid Adjustment 21
PARTS LIST

GENERAL DESCRIPTION

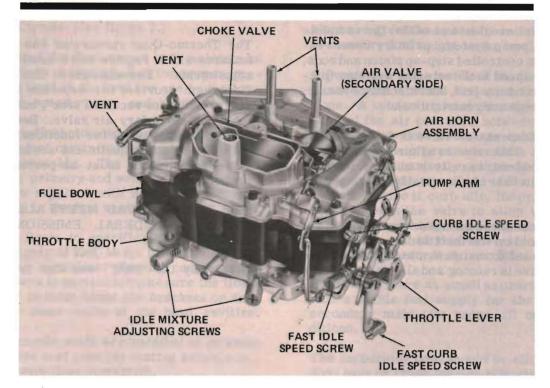


Figure 1. The Carter Thermo-Quad Carburetor

The Carter Thermo-Quad is a new type of carburetor designed to help reduce exhaust emissions and to permit the maximum performance that high-output engines are capable of delivering. (See figure 1.)

Essentially the design innovations incorporated into the Thermo-Quad culminate in a much higher degree of temperature control. The results were so effective that the Thermo-Quad runs as much as 20° cooler than all metal carburetors.

Performance oriented technicians understand immediately that a cooler carburetor keeps the fuel in the liquid state where it is supposed to be liquid — and vaporized when supposed to be vapor. He also knows that heat expands both liquid and vapor, and that a "cooler-fed" engine will produce more power. Expansion should occur inside an engine — not outside.

Three basic assemblies make up the Thermo-Quad: the throttle body, fuel bowl and bowl cover. The throttle body is a high-grade aluminum casting and contains the throttle valves, linkages and idle mixture screws. The bowl cover is also an aluminum casting and contains essentially all metering components, and because of this feature it is often referred to as a "suspended" design. Between the throttle body and bowl cover is a phenolic resin (plastic) fuel bowl that possesses

very high insulating characteristics. Consequently heat from the engine which would normally envelop the entire carburetor, is blocked by the plastic fuel bowl, thus permitting the metering section (bowl cover) to remain much cooler than conventional all metal carburetors.

When a Thermo-Quad equipped vehicle is driven conservatively, the smaller diameter primary bores maintain high air intake velocity consistent with maximum operating economy — but when extra power is needed and the larger diameter secondary throttle valves are opened, a virtually unrestricted supply of air-fuel mixture is admitted to the engine. There are no fixed venturii in the secondary bores, however the venturi effect is provided by the spring-loaded air valve in the secondary section. This valve is accurately refferred to as "variable venturi."

Five conventional circuits common to all Carter Carburetors are found in the Thermo-Quad:

Two float circuits
One low-speed circuit (in the primary side)
Two high-speed circuits
One pump circuit
One choke circuit (consisting of linkages to operate from a choke mechanism in the manifold

cavity).

The Thermo-Quad air horn houses the choke valve, air valve for the secondaries and its controls and adjustments, the fuelinlet system (two floats and inlet needles and seats) the complete accelerating pump system, primary boost ventures, vacuum controlled step-up piston and rods, low and high speed fuel metering systems (primany and secondary jets, fuel discharge nozzles and all air bleeds and restrictions).

A hot-idle compensator valve is located in the throttle body. This valve is a thermo-statically-operated air bleed, to relieve an overrich condition at idle in case of abnormally high temperatures.

A fast curb idle speed solenoid is mounted on the intake manifold on the throttle lever side. This solenoid is used to maintain a higher idle speed when the engine is running and allows the throttle

to close to a low idle speed position when the ignition key is turned off, to prevent "after runing".

The Thermo-Quad carburetor has many unique features which require extra caution during all adjustments. For example: The vacuum kick diaphragm provides two separate functions. It still provides for vacuum "kick", but it also controls the secondary air valve. Because of the separate nature of the two functions, two distinct but inter-related adjustments are necessary and these adjustments must be performed in the proper sequence.

THE THERMO-QUAD MEETS ALL REQUIRE-MENTS OF FEDERAL EMISSION CONTROL REGULATIONS.

It is truly the "HOT" one that runs "COOL".

All specifications found in this book pertain to the air bled metering system Thermo • Quad installed as original equipment on 1971 340 CID Chrysler Corporation Cars.

CARBURETOR CIRCUITS

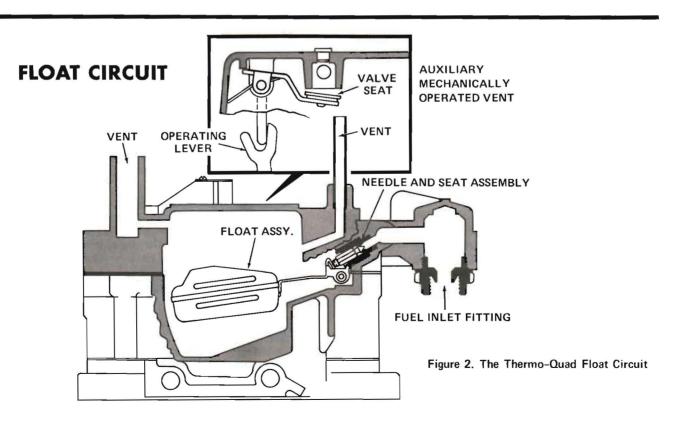
The Float Circuit (See figure 2.)

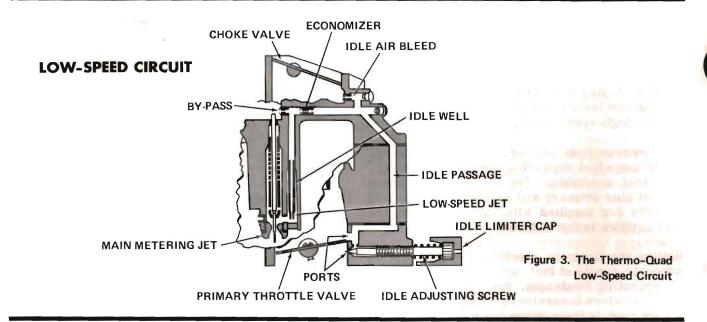
The purpose of the float circuit is to maintain an adequate supply of liquid fuel at the proper, predetermined level in the bowl for use by the low-speed, high-speed, pump and choke circuits.

Two separate float circuits are used, each circuit containing a fuel cavity float assembly and needle and seat assembly. The primary low-speed circuit plus primary and secondary high-speed circuits are supplied with fuel taken from the fuel cavities in the fuel bowl.

Setting the floats to specifications assures an adequate supply of fuel in the bowl cavities for all operating conditions. Special consideration should be given in service to make sure the floats do not bind in their hinge pin brackets or drag against the inner walls of the bowl cavities.

The intakeneedle seats are installed at an angle to provide the best possible seating action commensurate with float movement.


Intake needles and seats are carefully matched during manufacture. Do not use the left-hand needle in the right-hand seat, or vice-versa. In order to avoid unnecessary bending, both floats should be reinstalled in their original positions prior to adjusting for correct fuel level. Dimen-


sions are given float position rather than attempt to measure fuel height in the bowl.

All vents are to the inside of the air horn in compliance with Federal Emission Control Regulations. A connecting vent passage effects a balance of the air pressure between the two bowl cavities, thus bowl vents are calibrated to provide proper air pressure above the fuel at all times. A mechanically operated bowl vent valve is located at the top of one of the bowl cavities. With the engine at curb idle, the primary throttle linkage opens the valve to allow vapors to exit to the vapor storage system. As soon as the throttle is opened this valve is closed and remains closed except at curb idle.

Bowl cavities are as small as practicable to provide a stable fuel supply for the primary and secondary main jets under all operating conditions.

The carburetor bowl should be clean and free of dirt, gum or other foreign material. To assure a positive seal, the gasket surface of the castings must be free of nicks and burrs. An air or fuel leak at these points can result in a mileage complaint and cutting out on sharp turns or sudden stops. A new air horn gasket should be used each time the bowl cover assembly is removed for servicing operations.

The Low-Speed Circuit (See figure 3.)

Fuel for idle and early part throttle operation is metered through the low-speed circuit which is located on the primary side only.

Liquid gasoline enters the idle wells through the main metering jets. Each low-speed jet has a calibrated orifice at its lower tip which measures the amount of fuel for idle and early part throttle operation. The air by-pass passages, economizers and idle air bleeds are carefully calibrated and serve to break up the liquid fuel and mix it with air as it moves through the passages to the idle ports and idle adjustment screw ports. Turning the idle adjustment screws toward their seats reduces the quantity of fuel mixture supplied by the idle circuit. This is an over-rich mixture that emerges from the ports, but is leaned to a proper combustible mixture by the air that enters the engine manifold around the "cracked" primary throttle valve. Consequently, rotating the idle adjusting screw inward leans the idle low-speed mixture and rotating it outward enriches the idle mixture.

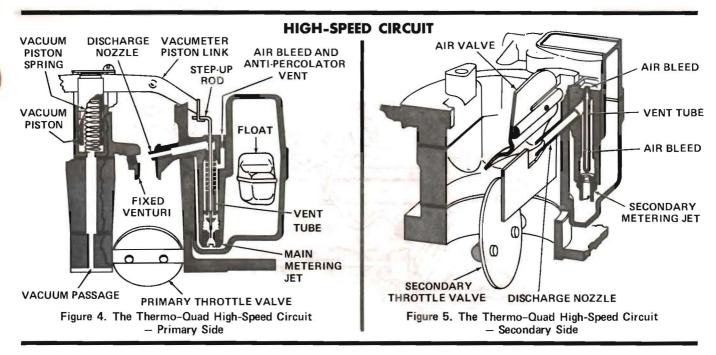
The idle ports, located directly above the idleadjusting screw ports, are slot shaped. As the throttle valves are opened, more of the idle ports are uncovered, allowing a greater quantity of the fuel-air mixture to enter the carburetor bores. The secondary throttle valves always remain seated at idle.

All by-passes, economizers, idle ports, idle adjustment screw ports, as well as the bore of the carburetor must be clean and free of carbon. Obstructions will cause poor low-speed engine

operation. Worn or damaged idle adjusting screws or low-speed jets should be replaced.

The low-speed jet, air bleed, economizer and by-pass bushings are pressed in place and must never be removed when servicing the carburetor.

Air leakage at the gasketed surface surrounding the low-speed (idle) mixture passages or between the flange and manifold may cause poor idle and low-speed operation. Always use new gaskets when servicing the carburetor.


On vehicle models equipped with or without air conditioning systems a hot-idle compensator is installed in the throttle body. This component consists of a thermostatically controlled valve that opens a calibrated air passage between the engine manifold and the air horn to compensate for an over-rich idle condition, should temperatures become sufficiently high to produce higher than normal vaporization of fuel in the idle passages of the carburetor.

The High-Speed Circuits

Fuel for part throttle and full throttle engine operation is supplied through the high-speed circuit, which is divided into the primary highspeed circuit and secondary high-speed circuit. These two circuit functions are described separately, as follows:

High-Speed Circuit - Primary Side (See figure 4.)

The position of the step-up rod in the main metering jet controls the amount of fuel admitted to the discharge nozzles. Each of the two step-up rods

has two-step diameters at its lower end which controls the effective size of the main metering jet through which it operates. The position of the step-up rod in the jet is determined by engine manifold vacuum through a spring-loaded vacuum piston and connecting linkage. Since manifold vacuum is an inverse function of engine requirements, the proper step-up rod diameter will always be correctly positioned in the main metering jet.

During part throttle operation, manifold vacuum pulls the vacuum piston and rod assembly down, holding the large diameter of the step-up rod in the main metering jet. This is true when the vacuum under the piston is "strong" enough to overcome the tension of the vacuum piston spring. Fuel is then metered around the large diameter of the step-up rod in the jet.

Under any operating condition, when the tension of the spring overcomes the pull of "vacuum" under the piston, the step-up rod will move up so its smaller diameter (power) step is in the jet. This permits the necessary additional fuel to be metered through the jet. The step-up rod does not require an adjustment.

In addition to the metering action of the step-up rod in the main-metering jet, precise fuel-air measurements are constantly affected for every high-speed engine demand, by calibrated perforations in the vent tubes functioning in unison with the high-speed air bleeds between the vent tube wells and air horn. These particular air bleeds also serve as anti-percolator vents, with engine stopped or at idle, by permitting vapors to escape that might otherwise build up and force raw

fuel through the nozzle into the intake manifold and produce more difficult hot starting.

<u>High-Speed Circuit</u> — Secondary Side (See figure 5.)

Liquid fuel for the high-speed circuit in the secondary portion of the carburetor is metered at the secondary metering jets. There are no stepup rods in the secondary metering jets.

The main vent tubes in the secondary side with their calibrated perforations and air bleeds, function to provide sensitively calibrated air-fuel mixtures in response to engine demands.

A spring-loaded air valve is located in the secondary side of the carburetor which is opened by air velocity through the secondary bores and closed by accurately-adjusted spring tension. A unique feature of this air valve is its shape. The lower edge of the valve is contoured in such a manner that when air velocity through the carburetor is high, and the lower edge of the air valve approaches the secondary nozzles, the contours act as venturii to increase air velocity at the tips of the nozzles. The effect is essentially that of the theoretical variable venturi in actuality, minus the air restrictions produced by conventional venturi.

The spring tension adjustment on the air valve is sensitive, but the procedure has been made easy, as described in the adjustment section of this manual.

A clogged air bleed or main vent tube may cause excessively rich mixtures. The high-speed bleed

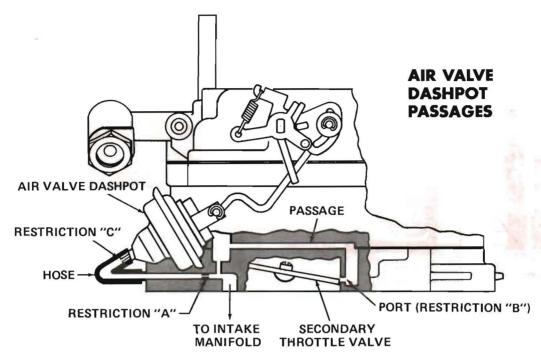


Figure 6. Air Valve Dashpot Operations

and main vent tubes are permanently installed and must not be removed.

The air bleeds, at the top of the vent tubes in the secondary side of the carburetor, also act as antipercolators in the same manner as in the primary side.

AIR VALVE DASHPOT (DIAPHRAGM) OPERATIONS (See figure 6.)

In addition to the air-valve functions described, an air valve dashpot (or diaphragm) is used to further control the air valve. The operation of the dashpot plus the control restrictions and passages is as follows:

During primary throttle operating condition (secondary valves not open) manifold pressure (vacuum) is transmitted through the passages connecting the air valve diaphragm to the underside of the carburetor flange. If the secondary valves are opened from either a closed throttle or part throttle position of the primary valves, the restrictions "A", "B" and "C" bleed off manifold pressure to the diaphragm, thus allowing the air valve to open at a rate that will provide smooth secondary operation.

Restrictions "A" and "C" are series restrictions for controlling rate of pressure bleed off to the diaphragm. Restriction "B" has an added function: During steady, extreme high-speed opera-

tion (70 mph approx.) it is possible that the secondary valves may be opened very slightly. If the diaphragm was directly connected to manifold vacuum at all times, the diaphragm might pull the air valve to a closed position causing an overrich mixture. Restriction "B" prevents this possibility of over-richness. When the secondary is slightly opened the restriction at "B" bleeds off a part of the manifold vacuum to the diaphragm. The diaphragm can then properly position the air valve for satisfactory performance.

THE PUMP CIRCUIT (See figure 7.)

The accelerating pump circuit, located in the primary side of the carburetor, provides a measured amount of fuel necessary to insure smooth engine operation upon acceleration at lower vehicle speeds.

When the throttle is closed, the pump plunger moves upward in the pump cylinder and fuel is drawn into the pump cylinder through the intake check, located at the bottom of the cylinder. The discharge check (needle) is seated at this time to prevent air from being drawn into the pump cylinder.

When the throttle is opened, the pump plunger moves downward closing the intake check and forcing fuel out through the discharge passage, past the discharge check needle and out through the pump jets.

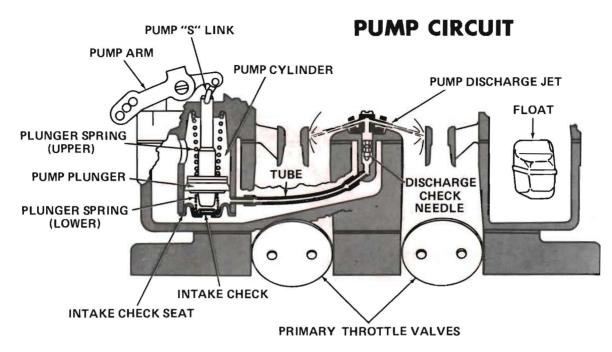


Figure 7. The Thermo-Quad Pump Circuit

At higher car speeds, pump discharge is no longer necessary to insure smooth acceleration. Therefore, in order to prevent unnecessary plunger movement, external pump linkage is so constructed that it travels "over center" when the throttle is in the higher speed positions, thus imparting just enough stroke to the plunger to keep all passages filled with liquid fuel.

A plastic tube is used to connect the outlet opening at the bottom of the pump cylinder with passage just below the discharge check. Make sure this tube is not damaged or collapsed when servicing the carburetor.

Two springs are used in the pump cylinder, one above and one below the plunger leather. The

upper spring is used to remove all free play from the pump operating linkage and insure an instant fuel discharge the instant the throttle valves are cracked. The spring located underneath the pump plunger is for the sole purpose of holding the intake check cage in place.

The plunger leather must be in good condition. The intake and discharge checks and pump jet must be free of lint, gum or other foreign material.

On some models, the pump lever contains three holes for attaching the throttle connector rod. Be sure to check the correct vehicle specifications for the proper hook-up.

SERVICE PROCEDURE

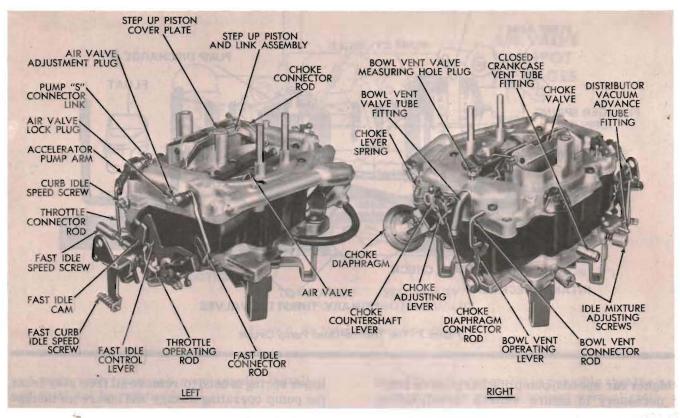


Figure 8. Carburetor on Repair Stand

- 1. Disassembling Carburetor (See figure 8.)
 - a. Removing Linkages and Bowl Cover
 - (1) Place carburetor assembly on repair stand (Tool C-3886). The repair stand is used to protect throttle valves from damage and to provide a suitable base for working.
 - (2) Remove rod retainers that hold throttle connector rod to accelerator pump arm and throttle lever, then remove rod from carburetor.
 - (3) Remove accelerator pump arm screw and disengage it from pump rod "S" link, (leave the "S" link connected to pump rod) then remove the lever.
 - (4) Remove the choke countershaft fast idle lever attaching screw while holding lever. Disengage lever from countershaft, then swing the fast-idle connector rod at an arc until it can be disengaged from the fast-idle operating lever.

- (5) Remove rod retainers and washer that holds choke diaphragm connector rod to choke vacuum diaphragm and air valve lever, then remove the lever.
- (6) Remove the rod retainer that holds choke connector rod to choke countershaft, then disengage the rod and swing it at an arc to disengage the choke shaft lever assembly.
- (7) Remove the step-up piston cover plate attaching screw and cover plate, then remove step-up piston and link assembly with step-up rods. Remove the step-up piston spring.
- (8) Remove the pump jet housing screw, housing and gasket. Invert carburetor and remove discharge check needle.
- (9) Remove 10 bowl cover screws. (See figure 9.) (Two of the bowl cover screws are located between choke valve and wall of bowl cover.) Remove the bowl cover and invert it on work bench to protect floats.

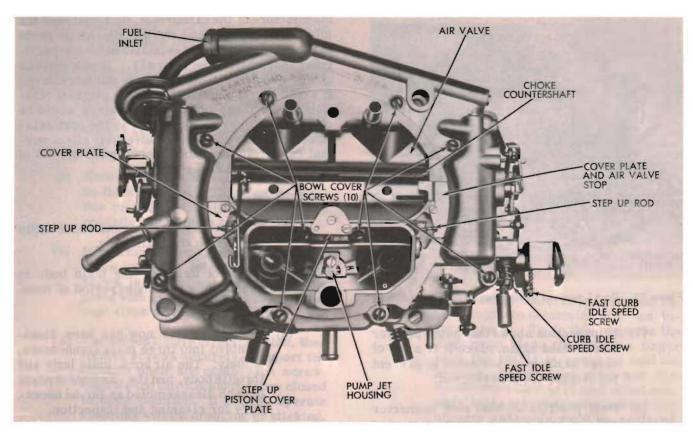


Figure 9. Top View of Carburetor

b. Disassembling the Bowl Cover

- (1) Remove the float lever pins and lift out float assemblies. It is suggested that the float on the pump side be marked so that floats can be reinstalled in their respective positions.
- (2) Remove the two needle valves from their respective seats, after marking the one on pump side for identification. Using a wide blade screwdriver, remove needle valve seats. Be sure each needle valve is returned to its original seat during reassembly.
- (3) Remove the primary jets (large screw-driver slots).
- (4) Remove the secondary jets (small screwdriver slots).
- (5) Remove acceleration pump passage tube (plastic) and bowl cover gasket.
- (6) Remove accelerator pump rod "S" link. To remove pump plunger assembly, use a small rod placed on upper end of plunger shaft and tap lightly with a small hammer. (See figure 10.)

CAUTION: Exercise care not to damage the plunger shaft hole in bowl cover. This should be done with fingers under lower portion of pump cylinder in order to catch the intake check seat, disc, disc retainer, spring (light), pump plunger and plunger spring (heavy).

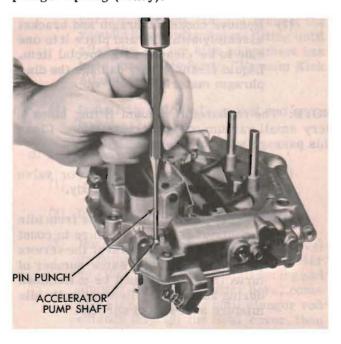


Figure 10. Removing Accelerator Pump Plunger

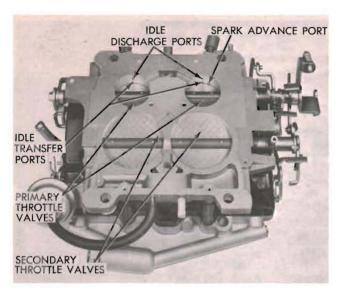


Figure 11. Port Locations in Relation to Throttle Valves

- (7) If inspection shows that pump plunger can be used again, place it in a jar of clean gasoline or kerosene to prevent the leather from drying out.
- (8) Note position of bowl vent connector rod and arm spring before removing retainer clip from connector rod, then remove the rod from bowl vent operating arm. Remove the grommet seal from operating arm.
- (9) Remove the fuel inlet fitting and gasket.

c. Disassembling Throttle Body

(1) Remove choke diaphragm and bracket assembly with hose and place it to one side to be cleaned as a special item. Liquid cleaners may damage the diaphragm material.

NOTE: The carburetor vacuum fitting hides a very small vacuum passage restriction. Clean this passage with compressed air only.

- (2) Remove hot-idle compensator valve and gasket from throttle body.
- (3) Remove plastic limiter caps from idle air mixture screws. Be sure to count the number of turns to seat the screws (from stop), as the same number of turns (from seat) must be maintained during assembly. Remove both idle mixture screws and springs.

NOTE: It is not advisable to remove the throttle shafts or valves unless wear or damage necessitates the installation of new parts. During the manufacture of the carburetor, the location of the idle transfer ports and the idle discharge ports to the valve is carefully established for one particular assembly. (See figure 11.) If new throttle shafts should be installed in an old worn body, it would be very unlikely that the original relationship of these ports to the valves would be obtained. A very slight change in the port relationship to the valves would adversely affect normal carburetor operation, between the speeds of curb idle and 30 miles per hour.

d. The Main Body

(1) It is not necessary to remove the baffle plate from the main body.

CAUTION: Do not immerse the main body in cleaning solvents for a prolonged period of time.

(2) The carburetor now has been disassembled into three main components, namely: The airhorn, main body and throttle body, and the component parts of each disassembled as far as necessary for cleaning and inspection.

2. Inspection and Reassembly

a. Visual Inspection

- (1) Check for cracks, warpage, stripped screwthreads, ordamaged ormarred mating surfaces, on all major castings. The passages in the castings should be free of restrictions.
- (2) Check the float assemblies for damage or any condition that would impair these items from further service.
- (3) The choke and throttle valves should be replaced if the edges have been nicked, burred or damaged. Make sure the choke and throttle shafts are not bent or scored.
- (4) Replace any broken or distorted springs.
- (5) Replace all screws and lockwashers that show signs of stripped threads or distortion.

b. Reassembly of Throttle Body

NOTE: If replacement of throttle valves is necessary, remove staked ends of screws with a file. These screws are staked to prevent loosening and care is necessary to avoid breaking them off in the shaft.

- (1) Remove the screws that hold throttle valves to the throttle shaft.
- (2) Slide the damaged throttle valves out of their bores. It should be noted at this time, that the numbered side is on the bottom (carburetor mounting flange) side and opposite the vacuum port.
- (3) Slide new throttle valves in position on throttle shaft, with the valve number on the bottom (flange side) and opposite the vacuum port.
- (4) Install new screws, but do not tighten. Make sure the idle speed adjusting screw is backed out. Hold valves in place with fingers (fingers pressing on high sides of valves).
- (5) Tap valves lightly in this position, then tighten screws securely. Support the throttle shaft and stake each screw. Operate the throttle shaft, from closed to open position. It should operate smoothly without dragging or sticking. Hold the throttle body up to a strong light. The light visible around the outer diameter of the valves and the bores should be uniform.
- (6) Install secondary throttle valves in the same manner as described for the primary valves. The numbers stamped on the secondary valves must be positioned toward the primary bores. (For adjustment instructions refer to "Secondary Throttle Adjustment".)
- (7) Install idle mixture screws and springs in the throttle body. The tapered portion must be straight and smooth to insure having correct idle mixture control. Do not use a screwdriver but turn screws lightly against their seats with fingers. Back off the number of turns counted during disassembly. Do not install limiter caps at this time.
- (8) Install the hot-idle compensator valve gasket in recess of throttle body; then install the hot-idle compensator valve. (See figure 12.)
- c. Installing Choke Vacuum Diaphragm (Also called Air Valve Dashpot)
 - (1) Inspect the vacuum diaphragm fitting to make sure the passage is not plugged

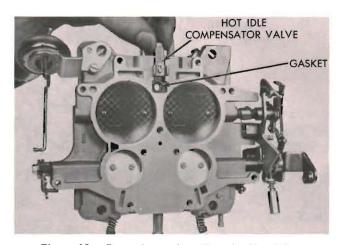


Figure 12. Removing or Installing the Hot-Idle Compensator Valve

with foreign material. Leak test the diaphragm to determine if it has internal leaks. To do this, depress the diaphragm stem, then place a finger oven the fitting in order to seal the opening. Release the stem and if it moves more than 1/16 inch inten seconds, leakage is excessive and the diaphragm assembly must be replaced.

- (2) Position the diaphragm and bracket assembly on the locating dowel on mounting surface. Install and tighten one attaching screw.
- (3) Inspect the rubber hose for cracks before installing it on the correct carburetor fitting (fitting next to diaphragm bracket). Do not connect the vacuum hose to diaphragm fitting until after the vacuum kick adjustment has been made. (Refer to "Vacuum Kick Adjustment.")
- (4) Install throttle body gasket and main body.
- d. Reassembly of Bowl Cover.
 - (1) Install both secondary jets.
 - (2) Install both primary jets.
 - (3) Position the accelerator upper (heavy) on pump plunger with large diameter up. (See figure 13.) Install spring and plunger in pump cylinder bore, compressing the spring until plunger rod extends through the bowl cover, then install the pump "S" link to retain the assembly in bowl cover. (See figure 14.)

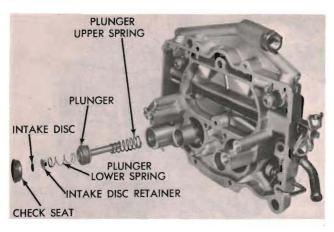


Figure 13. Accelerator Pump Assembly – Disassembled View

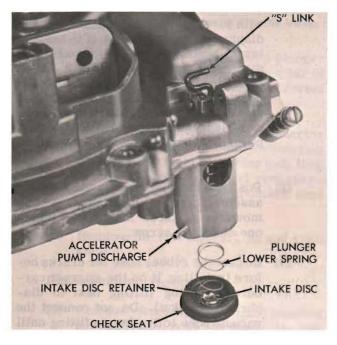


Figure 14. Installing Pump Check Seat

- (4) Position intake check seat with flange down. Install the intake disc (red) and intake disc retainer in the check seat. Make sure the disc is centered in retainer and seat. Install the plunger lower spring (light) in seat of disc retainer. (See figure 13.)
- (5) Position the accelerator pump bore over the assemble, then apply firm hand pressure to bowl cover to seat the intake check seat in the pump bore. (See figure 14.)
- (6) Install accelerator pump passage tube (plastic). Make sure the tube is not kinked.
- (7) Pour clean gasoline into the main body,

- approximately 1/2 inch deep, and carefully lower the bowl cover down onto the main body. Raise the pump plunger and press lightly on the plunger shaft to expel air from the pump passage.
- (8) Install accelerator pump discharge check needle in discharge passage. Using a small clean rod, hold discharge check needle firmly on its seat. Again raise the plunger and press downward. No fuel should be emitted from the discharge passage. Fuel leakage at discharge passage indicates presence of dirt or a damaged check needle. Clean again and install a new check needle. Re-test for leakage.
- (9) If the discharge check needle leaks after the above test, attempt to reseat it as follows:
 - (a) Insert a piece of drill rod down on the needle and lightly tap the drill rod with a hammer to form a new seat. Remove and discharge the needle and install a new one. Re-test as described previously. If this service "fix" does not correct the condition, a new carburetor will have to be installed.
 - (b) Install the accelerator pump jet housing, new gasket and attaching screw. Tighten the screw securely.
 - (c) Test for proper operation. A clear straight stream should emit from each jet. If streams are not identical, a new accelerator pump jet housing should be installed. After this test, remove the bowl cover and accelerator pump passage tube (plastic) from bowl cover. Pour all gasoline out of the main body.
- (10) Install a new grommet seal on bowl vent arm, position bowl vent arm in bowl cover with bowl vent arm spring hooked in the arm, then install the bowl vent connector rod, making sure that rod goes through loop of spring and the flat end engages the slot in bowl vent arm. Install the retainer clip. Bowl vent connector rod should be up when installed with bowl cover in an inverted position. (See figure 15.)

- (11) Place gaskets on fuel inlet needle seats, then install the seats in bowl cover. Tighten both seats securely. (Make sure each needle seat and needle is re-installed in its original position, if being re-used).
- (12) Place a new bowl-cover to main-body gasket in position on the bowl cover, then slide right- and left-hand floats into position in bowl cover. Install float fulcrum pins. Make sure the marked float is installed on pump side of bowl cover.
- (13) With bowl cover inverted, gasket installed and floats resting on seated needle, the dimension of each float from bowl cover gasket to bottom side of float should be according to specifications for the particular carburetor involved. (See figure 16.) To adjust, bend the float lever.

CAUTION: Never allow lip of float to be pressed against the needle when adjusting.

- (14) Install the accelerator pump passage tube (plastic).
- (15) Carefully lower the bowl cover down onto main body, making sure the bowl vent operating lever engages the bowl vent connector rod. Install ten airhorn screws and tighten them to 50 inch-pounds, in two stages.
- (16) Install the fuel inlet fitting with a new gasket and tighten it securely.
- (17) Engage the pump rod "S" link with hole in accelerator pump arm, then position arm on air horn and install pump arm screw. (See figure 17.)
- (18) Engage the throttle connector rod with hole in throttle lever. Insert the other end in accelerator pump arm (center hole) and install both rod retainers.
- (19) Install the step-up piston spring in piston cylinder, followed by step-up rods and piston and link assembly. In stall cover plate and attaching screws. Tighten the screw securely.
- (20) Engage the choke connector rod with hole in choke shaft lever, then swing the rod at an arcuntil rod can engage choke countershaft. Install the rod retainer.

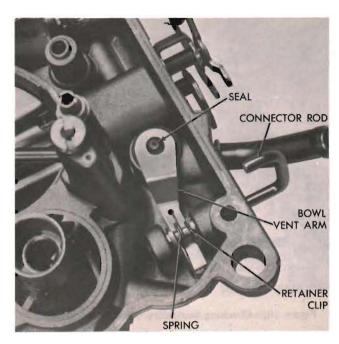


Figure 15. Bowl Vent Assembly Installation

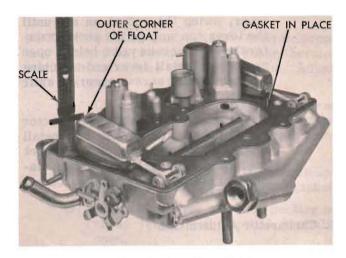


Figure 16. Checking Float Height

Figure 17. Correct Installation of Pump Rod "S" Link

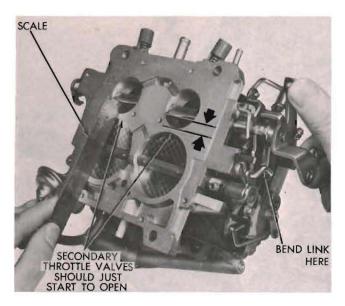


Figure 18. Checking Secondary Throttle Adjustment

- (21) Engage the fast-idle connector rod with the slot in fast-idle operating lever, swing the rod at an arc until the lever can engage the choke countershaft (with choke valve held in open position). Install lever and attaching screw. Tighten screws securely while holding the lever.
- (22) Engage the choke diaphragm connector rod to the air valve lever, then install a washer and rod retainer. Connect the other end to choke vacuum diaphragm plunger and install a rod retainer.

3. Carburetor Adjustments

NOTE: Many of the following adjustments should be made with carburetor on a bench for ease of working. The adjustments should be made in the following order:

- 1. Secondary Throttle Linkage
- 2. Secondary Air Valve Opening
- 3. Secondary Air Valve Spring Tension
- 4. Accelerator Pump Stroke
- 5. Choke Control Lever Adjustment (off or on vehicle)
- 6. Choke Diaphragm Connector Rod
- 7. Vacuum Kick Adjustment (off or on vehicle)
- 8. Fast-Idle Cam and Linkage
- 9. Choke Unloader Adjustment (wide open kick)
- 10.Secondary Throttle Lockout
- 11. Bowl Vent Valve Adjustment
- 12. Fast-Idle Speed
- 13. Fast Curb Idle Solenoid Adjustment
 - a. Secondary Throttle Linkage Adjustment
 - (1) Check the secondary throttle linkage

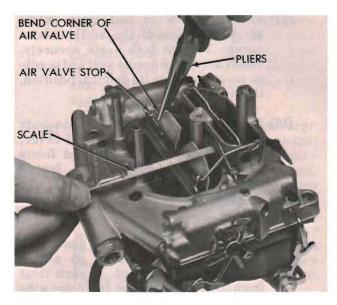


Figure 19. Adjusting Secondary Air Valve Opening

adjustment, by blocking the choke valve in the wide open position and inverting the carburetor. Slowly open the primary throttle valves until it is possible to measure the specified distance between the lower edge of the primary throttle valve and the bore (opposite idle port). (See figure 18.) At this measurement, the secondary valves should just start to open.

- (2) If an adjustment is necessary, using pliers, bend the secondary throttle operating rod at the angle until correct adjustment has been obtained.
- b. Secondary Air Valve Opening Adjustment
 - (1) With the air valve in closed position, the opening along the air valve at the long side must be at its maximum and parallel with the air horn gasket surface.
 - (2) With air valve in wide open position, the opening of the air valve at the short side and air horn should be according to specifications for the particular carburetor involved. The corner of the air valve is notched for adjustment. Bend the corner with a pair of pliers to provide the proper opening. (See figure 19.)
- c. Secondary Air Valve Spring Tension Adjustment.
 - (1) Loosen the air valve lock plug (figure 20) and allow the air valve to position itself to wide open position.

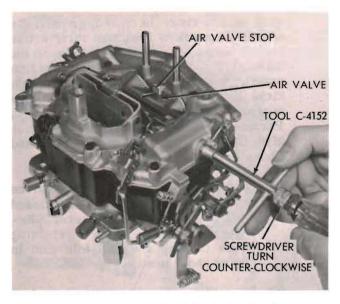


Figure 20. Adjusting Air Valve Spring Tension

- (2) With a long screwdriver that will pass through the center of Tool C-4152 (positioned on air valve adjustment plug) rotate the plug counterclockwise until the air valve contacts its stop lightly, testing with the finger, then rotate an additional number of turns as specified for the carburetor involved.
- (3) Hold the adjustment plug with screwdriver, and tighten the lock plug securely with Tool C-4152. Make sure the adjustment does not move when tightening. Check the air valve for freedom of movement. There must be no binding at any valve position.

d. Accelerator Pump Stroke Adjustment

- (1) Move the choke valve to wide open position, to release the fast idle cam. Back off the idle-speed adjusting screw (curb idle) until throttle valves are seated in bores. Make sure the throttle connector rod is installed in the specified hole of accelerator pump arm.
- (2) Close the throttle valve tightly and measure the distance between top of bowl cover and end of plunger shaft. (See figure 21.) This measurement should be as specified for the particular carburetor being serviced.
- (3) If an adjustment is necessary, bend the throttle connector rod at the lower angle, until correct travel has been obtained.

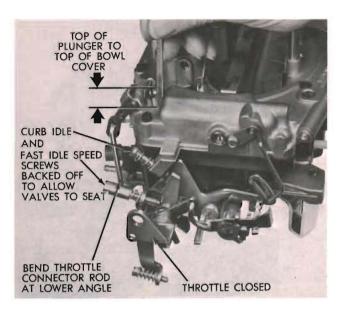


Figure 21. Adjusting the Accelerator Pump Stroke

e. Choke Control Lever Adjustment (Off or On the Vehicle)

NOTE: The choke control lever must be properly adjusted to provide correct choke thermostat loads and choke linkage operation. Adjust it as follows:

- Off vehicle place the carburetor on flat object with surface flush against bottom of flange and extending out under the choke control lever.
- (2) On vehicle remove the choke assembly, stainless steel cup and gasket.
- (3) Close the choke valve by pushing on choke lever, with throttle partially open.
- (4) Measure the vertical distance from top of rod hole in control lever down to the flat surface simulating carburetor bottom (off vehicle) or down to clean choke pad surface (on vehicle).
- (5) This dimension (on or off the vehicle) should be as specified for the particular carburetor being serviced. (See figure 22.)
- (6) Adjust by bending the link connecting the two choke shafts as indicated. (See figure 22.)
- f. Choke Diaphragm Connector Rod (Secondary Air Valve Control) Adjustment

NOTE: The diaphragm must be energized to adjust the choke diaphragm connector rod. Use an auxiliary source, such as a distributor test machine. Perform this adjustment before the Vacuum Kick Adjustment.

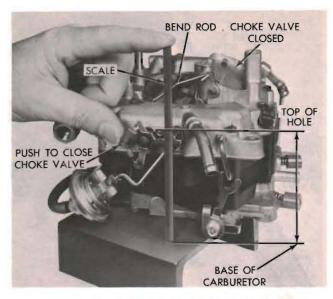


Figure 22. Adjusting Choke Control Lever

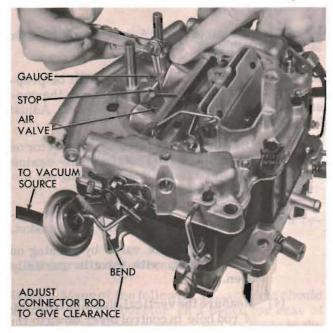


Figure 23. Adjusting Choke Diaphragm Connector Rod (Secondary Air Valve Control)

- (1) Make sure the diaphragm assembly is securely mounted on the carburetor. Apply a vacuum of 10 or more inches of Hg. to the diaphragm to fully depress the diaphragm stem.
- (2) With the air valve closed, adjust connector rod to provide clearance between air valve and stop as specified for the particular carburetor involved. (See figure 23.)
- g. Vacuum Kick Adjustment (Off or On the Vehicle.)

The choke diaphragm adjustment controls the fuel delivery while the engine is running and the choke is closed, or partially closed. It positions the choke valve within the air horn by use of linkage between the choke shaft and diaphragm. The diaphragm must be energized to measure the vacuum kick. Use vehicle vacuum or an auxiliary source such as a distributor test machine. Perform this adjustment after qualification of the Choke Diaphragm Connector Rod and Choke Control Lever.

- (1) Off vehicle open the throttle valves and move the choke valve to closed position with the control lever. Release the throttle before releasing choke to trap the fast-idle cam in closed choke position.
- (2) On vehicle with engine running, back off the fast-idle speed screw until the choke can be closed to the kick position at curb idle. (Note number of screw turns required so that fast-idle can be returned to its original adjustment.)
- (3) Off vehicle using an auxiliary vacuum source, disconnect the vacuum hose from carburetor and connect it to the hose from vacuum supply with a small length of tube to serve as a fitting. Removal of the hose from diaphrag m may require forces which could damage the diaphragm. Make sure the diaphragm is securely mounted on the carburetor. Apply a vacuum of 10 or more inches of Hg.
- (4) Insert a specified (See specifications) drill between the long side (lower edge) of choke valve and the air horn wall. (See figure 24.) Apply sufficient closing pressure on the choke control lever to provide a minimum choke valve opening without distortion of the choke linkage. (Note that some carburetor models extend a spring connecting the control lever to an adjustment lever. This spring must be fully extended for proper measurement of the vacuum kick adjustment.)
- (5) Adjustment will be necessary if a slight drag is not obtained as the drill is being removed. Bend the tang indicated in figure 24 to change contact with end of diaphragm rod. Do not adjust the diaphragm rod. Adjust the tang only while applying a counter force to the adjustment lever. Counter force can be provided by a screwdriver

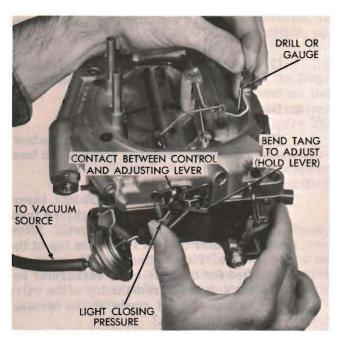


Figure 24. Adjusting Vacuum "Kick"

placed in the U-shaped opening between the lever and shaft.

CAUTION: Do not load the link connecting the two choke shafts because the choke "Control Lever Qualification" will change.

- (6) Re-install the vacuum hose on correct carburetor fitting. Return the fast-idle screw to its original adjustment if an on vehicle adjustment was made.
- (7) With no vacuum applied to diaphragm, the choke valve should move freely between open and closed positions. If this movement is not free, examine the system for misalignment or interferences and make necessary corrections. Repeat the adjustment if necessary.

h. Fast-Idle Cam and Linkage Adjustment

With fast-idle screw on second step of fastidle cam, against shoulder of first step, adjust the fast-idle connector rod to obtain correct (see specifications) opening between the air horn wall and edge of choke valve (long side of valve nearest lever). (See figure 25.)

i. Choke Unloader Adjustment (Wide Open Kick)

The choke unloader is a mechanical device to partially open the choke at wide open throttle. It is used to eliminate choke enrichment during cranking of an engine.



Figure 25. Adjusting Fast-Idle Cam and Linkage

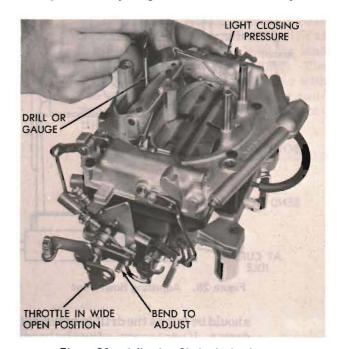


Figure 26. Adjusting Choke Unloader

Engines which have been flooded or stalled by excessive choke enrichment can be cleared by use of the unloader. Adjust it as follows:

- (1) Hold throttle valves in wide open position. Insert specified (see specifications) drill between long side (lower edge) of choke valve and inner wall of air horn. (See figure 26.)
- (2) With the finger pressing lightly against the choke control lever, a slight drag

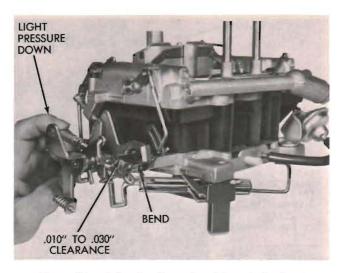


Figure 27. Adjusting Secondary Throttle Lockout

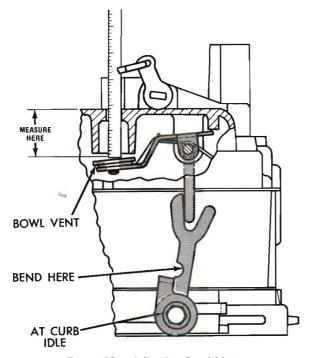


Figure 28. Adjusting Bowl Vent

should be felt as the drill is being withdrawn. If necessary, adjust by bending the tang on fast-idle control lever until correct opening has been obtained.

j. Secondary Throttle Lockout Adjustment

Secondary throttle operation is eliminated during the choke cycle by use of a latch, triggered by the fast-idle system. Adjust it as follows:

- (1) Move the choke control lever to the open choke position.
- (2) Measure clearance between lockout lever and stop, which should be be-

tween .010 and .030 inch. (See figure 27.)

(3) Bend the tang on fast-idle control lever to provide the proper clearance.

k. Bowl Vent Valve Adjustment

- Using a suitable tool, remove the bowl vent valve checking hole plug in bowl cover.
- (2) With throttle valves at curb idle, insert a narrow ruler down through hole from which the plug was removed. Allow the ruler to rest lightly on top of the valve. The reading should be as specified for the particular carburetor being serviced, from the top of the valve to top of bowl cover at the opening. (See figure 28.)
- (3) If an adjustment is necessary, bend the bowl vent operating lever at the notch until correct valve opening has been obtained.
- (4) Install a new plug and tap it lightly with a small hammer to seat it in bowl cover.

1. Installing Carburetor On Engine

- (1) After the preceding adjustments have been completed, re-install the carburetor on the engine, using a new gasket.
- (2) It is suggested that the carburetor be filled with clean gasoline. This will help prevent dirt that is trapped in the fuel system, from being dislodged by free flow of fuel, as the carburetor is primed. It will also enable a quick start.

m. Fast Idle Speed Adjustment (On Vehicle)

Fast-idle engine speed is used to overcome cold engine friction, stalls after cold starts and stalls because of carburetoricing. Set this adjustment after the vehicle odometer indicates over 500 miles to insure a normal engine friction level. Prepare the engine by driving at least five miles. Connect a tachometer and set the curb idle speed and mixture, then proceed as follows:

NOTE: Before adjusting idle and/or fast-idle speeds and mixtures, make sure the basic ignition timing is correctly adjusted.

- (1) With engine off and transmission in "PARK" or "NEUTRAL" position, open the throttle slightly.
- (2) Close the choke valve until the fastidle screw can be positioned on the second step of fast-idle cam against shoulder of first step. (See figure 29.)
- (3) Start the engine and determine stabilized speed. Rotate the fast-idle speed screw in or out to secure the specified speed. (Refer to specifications.)
- (4) Stopping the engine between adjustments is not necessary. However, reposition the fast-idle speed screw on the cam after each speed adjustment to provide correct throttle closing torque.
- n. Fast Curb Idle Speed Solenoid Adjustment
 - Warm up the engine to normal operating temperature, and connect a tachometer.
 - (2) With engine running (solenoid energized), rotate the fast curb idle adjusting screw in or out against the solenoid plunger to secure specified engine rpm for manual or automatic transmission equipped vehicles. (Refer to specifications for correct engine rpm.)

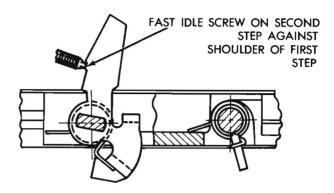


Figure 29. Fast-Idle Speed Cam Position

- (3) After the specified rpm has been obtained and, with engine still running (solenoid energized), adjust the slow curb idle speed screw until end of screw just touches the stop. Now, back off one full turn of the screw to obtain the correct slow curb idle speed setting. (Refer to specifications.) Test by disconnecting the solenoid wire at the connector. (Do not allow the lead to short circuit on the engine.) The solenoid will not advance throttle with the wire disconnected. It will be necessary to manually advance the throttle to obtain a fast curb idle.
- (4) Re-connect the solenoid wire after the test.

PARTS LIST

The exploded view drawing (figure 30) shows the carburetor completely broken down into individual parts. Each item is referenced from the drawing (figure 30) to the accompanying "Parts List" by an arbitrary number entitled "Index No". DO NOT ATTEMPT TO ORDER PARTS BY THESE NUMBERS.

The second column in the "Parts List", entitled "Family Group No." is the family number prefix,

Index No.	Family Group No.	Part Name
1	1A	Flange gasket
2	3-	Secondary throttle shaft
3	4A-	Secondary throttle shaft dog
4	150A-	Pin spring
5	61-	Secondary throttle shaft spring
6		Throttle body
7	145	Choke diaphragm hose
8	202-	Choke diaphragm and bracket assy.
9	136-	Throttle shaft spring washer
10	53A-	Bowl vent operating arm
11	101-	Bowl vent operating arm screw
12	53A-	Bowl vent operating lever
13	101–	Choke diaphragm bracket screw
14	169—	Thermostatic valve assy.
15	20-	Thermostatic valve gasket
16	61-	Idle mixture screw spring
17	30A-	Idle mixture screw
18	96–	Idle mixture screw limiter cap
19	61-	Primary throttle shaft spring
20	51-	Throttle shaft collar
21	53A-	Fast-idle operating lever
22	61-	Fast-idle and idle speed screw spring
23 24	101-	Fast-idle speed screw Throttle connector rod
25	115- 53A-	
26	101–	Pump operating lever assy. Fast-idle operating lever screw
27	181-	Fast-idle cam
28	61-	Fast-idle cam spring
29	115-	Throttle operating rod
30	4A-	Primary throttle shaft dog
31	3–	Primary throttle shaft and lever assy.
32	101-	Fast curb idle speed screw
33	101-	Fast curb idle speed screw spring
34	2-	Secondary throttle valve
35	101-	Secondary throttle valve screw
36	101-	Primary throttle valve screw
37	2-	Primary throttle valve
38	121-	Body flange gasket
39	constant to	Fuel bowl
40	24-	Float lever pin
41	21-	Float assembly
42	145-	Pump passage tube
43	63-	Intake disc check seat
44	169-	Pump intake check
45	63-	Intake disc check retainer
46	61-	Pump spring, lower
47	64-	Pump plunger assy.
48	61-	Pump spring, upper
49	101-	Choke countershaft lever screw
50	14—	Choke countershaft lever

appearing in all Carter parts lists for a specific carburetor. The identifying suffix following the dash may be secured from the Carter Catalog Sheet for a specific carburetor model.

NOTE: The following "Parts List" and figure 30 are provided in this publication for reference, identification and location of parts... not for ordering parts. (Refer to the specific catalog sheet.)

Index No.	Family Group No.	Part Name
51	115-	Fast-idle connector rod
52	121-	Air horn gasket
53	120-	Primary metering jet
54	120-	Secondary metering jet
55	61-	Bowl vent arm spring
56	53A-	Bowl vent arm
57	164-	Grommet seal
58	25-	Needle and seat assembly
59	20-	Needle seat gasket
60	20-	Fuel inlet fitting gasket
61	15-	Fuel inlet fitting
62	115-	Choke connector rod
63	101-	Choke lever screw
64	114-	Choke lever
65	150A-	Pin spring (small)
66	13-	Air valve shaft and lever assy.
67	61-	Choke lever spring
68	14-	Choke adjusting lever
69	1.2	Air horn assembly (bowl cover)
70	11B-	Air valve lock plug
71	11B-	Air valve adjustment plug
72	61–	Air valve spring
73	101-	Pump arm screw
74	111-	Pump arm
75	117-	Pump connector link ("S"-link)
76	101-	Idle speed screw
77	113-	Choke countershaft and lever assy.
78	115-	Choke diaphragm connector rod
79	136-	Choke diaphragm connector rod washer
80	13-	Choke shaft and lever assembly
81	150A-	Pin spring (large)
82	115-	Bowl vent connector rod
83	11B-	Air valve adjustment plug
84	65-	Step-up rod cover plate (L-H)
85	101-	Step-up rod cover plate (L-II)
00	101-	metering rod guide plate screw
86	7-	Air valve
87	65-	Step-up rod cover plate (R-H)
88	17–	Pump discharge check needle
89	121-	Pump jet housing gasket
90	48	
90	48 101-	Pump jet and housing assy.
92	16-	Pump jet housing screw
93	101-	Step-up rod Choke and air valve screw
93	61-	Vacuum piston spring
95	160-	
96	65–	Step-up piston and link assy. Step-up piston cover plate
97	101-	Bowl cover screw
98	7-	Choke valve
30	'-	OHOVE AGIAE

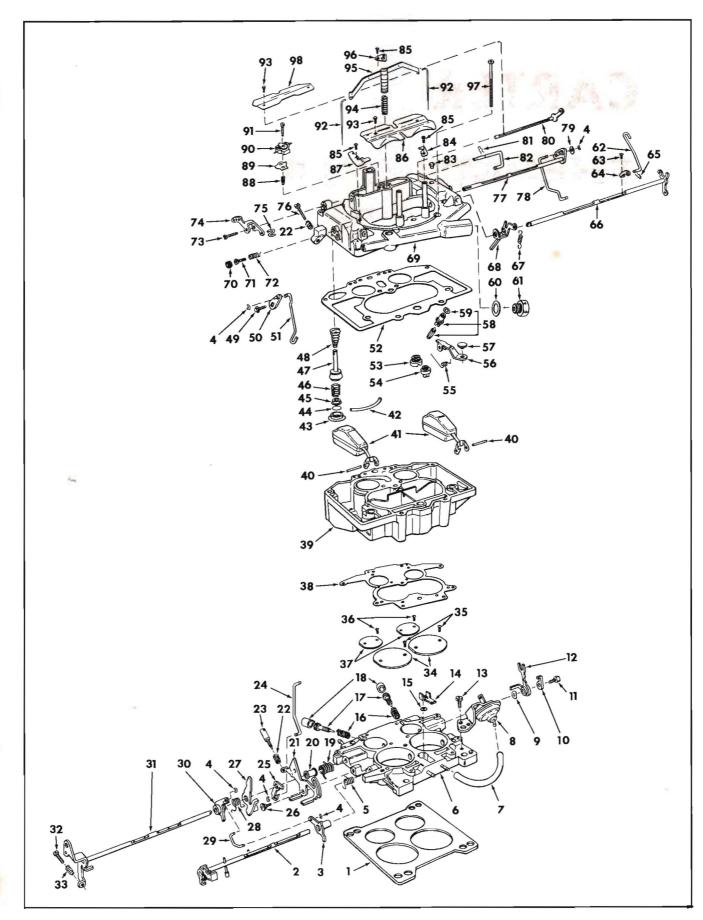


Figure 30. Exploded View of Carburetor

CARTER THERMO·QUAD CARBURETOR